University of Toronto'dan çözümlü bir problemin AYT uyarlaması: "Normal olasılık dağılış eğrisi ortalama etrafında simetriktir. Bu nedenle dağılışın ortalaması, ortancası ve tepe değeri x ekseni üzerinde aynı noktadadır. Normal olasılık dağılışında; µ ∓ σ sınırları bireylerin % 68,26'sını, µ ∓ 2σ sınırları bireylerin % 95,44'ünü, µ ∓ 3σ sınırları bireylerin % 99,73'ünü içine alır." https://i.ibb.co/zGKtNYJ/Toronto.png Yukarıdaki grafikte bir iş yerindeki çalışanların kalp atış hızlarının, çalışanların sayısına ilişkin histogramı ve buna adapte edilmiş normal dağılış eğrisi verildiğine göre bu dağılışın standart sapması (σ) yaklaşık olarak dakikada kaç kalp çarpışıdır? A) 0,4 B) 4 C) 8 D) 16 E) 68 Eğrinin sağ tarafına göre σ1 = [ (68,26 / 2) / 100 ]·(92,5 - 67,5) = 0,3413·25 = 8,5325 Seçenekleri sorudaki gibi verilmiş br test sınavında aşağıdaki işlemleri yapmadan C seçeneği (8) işaretlenir. Eğrinin sol tarafına göre σ2= [ (68,26 / 2) / 100 ]·(67,5 - 47,5) = 0,3413·20 = 6,826 σ = (σ1 + σ2) / 2 = (8,5325 + 6,826) / 2 = 15,361 / 2 = 7,6805 Sorunun Aslı ve Çözümü: https://i.ibb.co/KWqW3M4/Toronto1.png https://www.physics.utoronto.ca/~jharlow/teaching/phy131summer11/testv1.pdf (Sayfa 2, Soru 1) Çözümler: https://www.physics.utoronto.ca/~jharlow/teaching/phy131summer11/test1solutions.pdf Kaynak: "İstatistiğe Giriş", Doç.Dr. Halis Püskülcü, Doç.Dr. Fikret İkiz, Ege Üniversitesi Mühendislik Fakültesi, Bilgisayar Bilimleri Mühendisliği, 2. baskı, 1986, Sayfa 117