Çözüldü Trigonometrik Denklem

Konusu 'Trigonometri,Karmaşık Sayılar,Logaritma,Parabol' forumundadır ve Honore tarafından 18 Ocak 2017 başlatılmıştır.

Yüklüyor...
  1. Honore

    Honore Yönetici Yönetici

    Mesajlar:
    7.989
    Beğenileri:
    652
    Cinsiyet:
    Bay
    Meslek:
    Müh. (Elk./Bilg.)
    Sayın Şamil Hocamız'ın eski sitedeki çözümlerinden biri (özellikle test sınavları için ideal bir yaklaşım) ve aklımda kalmış açıklaması:

    (cosx)^3 - 2(sinx)^2 + cos3x = (tanx)^2 + 2 denklemini çözünüz.

    Eşitliğin sol tarafı en fazla 2 olabilir. Sağ tarafı ise en az 2 olabilir. Demek ki eşitlik ancak x=0 için sağlanabilir.

    Bu matematikte bir soru tarzıdır. Yani eşitliğin sol tarafı daima bir k sayısından eşit ve ondan küçük, sağ tarafı da daima bir k sayısına eşit ve ondan büyük ise eşitliğin ikisinin de sadece o k değerine eşitliği söylenebilir.
    ---
    Ben de aşağıdaki işlemlerle şöyle yapmaya çalıştım:
    (sinx)^2 = 1 - (cosx)^2
    cos3x = cos(2x + x)= 4(cosx)^3 - 3cosx
    (tanx)^2 = (sinx)^2 / (cosx)^2 eşitlikleri yazılıp düzenlenirse,
    (cosx)^5 + 2(cosx)^4 + 4(cosx)^3 - 3(cosx)^2 - 3cosx - 1 = 0 ve çözümü kolaylaştırmak için cosx = t dönüşümüyle;

    t^5 + 2t^4 + 4t^3 - 3t^2 - 3t - 1 = 0 denklemi elde edilip Rasyonel Kök Teoremine (Rational Root Theorem) göre son terimin çarpanları olan -1 ve +1 değerlerinden önce +1 değeri, Horner Yöntemiyle polinomun (t - 1) ile bölünmesinde kontrol edilirse (çarpanlara ayrılırsa);
    (t - 1)(t^4 + 3t^3 + 7t^2 + 4t + 1) = 0 ve t = 1 ⇒ cosx = 1 ⇒ x = 0 bulunur.

    Not: Q(x) = (cosx)^4 + 3(cosx)^3 + 7(cosx)^2 + 4cosx + 1 > 0 dır çünkü x = π için (veya t değişkenine göre ikinci polinom çarpanında t = -1 için);
    Q(π) = (-1)^4 + 3(-1)^3 + 7(-1)^2 + 4(-1) + 1 = 1 - 3 + 7 - 4 + 1 = 2 > 0
     

  2. Benzer Konular: Trigonometrik Denklem
    Forum Başlık Tarih
    Limit ve Süreklilik,Türev,İntegral Kinematik - Trigonometrik Denklem ve İntegral - Çarpanlara Ayırma 25 Ocak 2023
    Trigonometri,Karmaşık Sayılar,Logaritma,Parabol Trigonometrik Denklem 19 Ocak 2023
    SOHBET - Ivır Zıvır Sorular (CHAT - Trivial Questions) Trigonometrik Denklem - Dördüncü Derece Denklem 28 Aralık 2022
    SOHBET - Ivır Zıvır Sorular (CHAT - Trivial Questions) Üçgende Uzunluk - İkinci Derece Trigonometrik Denklem 23 Aralık 2022
    Hatalı veya Tekrarlanmış Sorular Trigonometrik Denklem (Soru Hatalı) 1 Aralık 2022

Sayfayı Paylaş