Çözüldü Noktanın ve Doğrunun Analitiği

Konusu 'Düzlem ve Uzay Analitik Geometri' forumundadır ve Honore tarafından 29 Mayıs 2020 başlatılmıştır.

Yüklüyor...
  1. Honore

    Honore Yönetici Yönetici

    Mesajlar:
    10.502
    Beğenileri:
    652
    Cinsiyet:
    Bay
    Meslek:
    Müh. (Elk./Bilg.)
    [​IMG]
    https://i.ibb.co/VT2jLjF/analitik22.png
    https://www.facebook.com/photo.php?fbid=1587555051420991&set=g.1174585619345646&type=1&theater&ifg=1
    (Sorunun gönderildiği Facebook grubu 25 Eylül 2022 tarihinde "Private" duruma getirildiği için sorunun aslını ve varsa diğer çözümleri ancak üyeleri görebilir.)

    B ve C noktalarının apsisi olan 9 ne işe yarayacak göremedim.
    A(a, 0)
    D(a, 6)
    E(e1, e2)
    [DO]'nun eğimi: 6 / a
    Deltoid köşegenleri arasındaki açı 90° olduğundan [AE]'nin eğimi: -a / 6
    [AE]'nin denklemi: y - e1 = (-a / 6)(x - e1) ve A noktasına göre 0 - e1 = (-a / 6)(a - e1) denklemi düzenlenerek;
    e1 + (6 / a)·e2 = a eşitliğinden seçeneklere göre e1 + e2 ∈ N^(+) olmasını sağlayan tek a = 6 olduğundan;
    e1 + (6 / 6)·e2 = 6 ⇒ e1 + e2 = 6 olabilir.
    Problem, hatasızlığı gösterilip çözümü yapılana kadar "Hatalı Sorular" bölümünde.

  2. Benzer Konular: Noktanın Doğrunun
    Forum Başlık Tarih
    Düzlem ve Uzay Analitik Geometri Noktanın ve Doğrunun Analitiği - Pisagor Teoremi - Trigonometri 12 Eylül 2025
    Trigonometri,Karmaşık Sayılar,Logaritma,Parabol İkinci Derece İki Bilinmeyenli Denklemler - Parabol - Türev - Noktanın ve Doğrunun Analitiği 12 Eylül 2025
    Limit ve Süreklilik,Türev,İntegral Noktanın ve Doğrunun Analitiği - Trigonometri - Konide Hacim - İntegral 14 Ağustos 2025
    Ivır Zıvır Sorular - Sohbet (Trivial Questions - Chat) Doğrunun ve Noktanın Analitiği - Üstel ve Kareköklü Sayılar 12 Ağustos 2025
    Düzlem ve Uzay Analitik Geometri Noktanın ve Doğrunun Analitiği - Üçgende Kenarortay ve Yükseklik - Trigonometri 29 Haziran 2025

  3. Bora.

    Bora. Matematik Öğretmeni Yönetici

    Mesajlar:
    150
    Beğenileri:
    144
    Şöyle birşey yapsak olur sanırım

    IMG_20200529_165823.jpg
    Honore bunu beğendi.
  4. Honore

    Honore Yönetici Yönetici

    Mesajlar:
    10.502
    Beğenileri:
    652
    Cinsiyet:
    Bay
    Meslek:
    Müh. (Elk./Bilg.)
    Zihninize sağlık sevgili Bora Hocam, yine sizden tam sınavlık süper pratik bir çözüm. Öğrenciler adına da çok teşekkür ederim sayın üstadım, selamlar, hürmetler.
  5. Bora.

    Bora. Matematik Öğretmeni Yönetici

    Mesajlar:
    150
    Beğenileri:
    144
    Ne demek hocam elimden geleni yapmaya çalışıyorum. Bu arada ben size teşekkür ederim. Mezun olan öğrencime cevap verip ona yardımcı olmuşsunuz. Selamınızı aldım:) sevgiler, saygılar sayın hocam...
    Honore bunu beğendi.

Sayfayı Paylaş